Brain Activation During Thermal Stimulation in Neuropathic Pain

NCT ID: NCT00525018

Last Updated: 2007-09-05

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

80 participants

Study Classification

OBSERVATIONAL

Study Start Date

2007-01-31

Study Completion Date

2008-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Patients with peripheral neuropathy frequently exhibit treatment-refractory neuropathic pain. Although both peripheral and central determinants are recognized for the pathophysiological basis of neuropathic pain following peripheral injury, the modulating effect on pain processing in brain by peripheral mechanisms remains elusive. Here, we will systematically compare the sensory symptoms and brain activation to painful heat stimulation applied to the foot dorsum between patients with peripheral neuropathy and healthy controls. Functional magnetic resonance imaging will be used to define brain activation to thermal stimulation with noxious heat and innocuous warm thermal stimuli applied by contact heat stimulator. Brain activation during thermal stimulation in patients with neuropathic pain will be clarified, and we will also analyze the potential relationships between the topography, quality and intensity of the different painful symptoms and the magnitude and pattern of brain activation during thermal stimulation. This will add in our understanding in the pathophysiology of brain modulation in pain and provide clinically useful message toward the potential therapeutics in the management of neuropathic pain.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Patients with peripheral neuropathy and healthy volunteers will be recruited in this study. Peripheral neuropathy is defined according to the neuropathic symptoms and signs. Informed consent will be approved by the Ethical Committee of the National Taiwan University Hospital and obtained from each subject.

To assess the severity of different neuropathic symptoms, such as spontaneous ongoing and paroxysmal pain, evoked pain, paraesthesia, and dysaesthesia, patients with neuropathic pain will fill out the Neuropathic Pain Symptom Inventory. Each subject will receive detailed sensory examination to evaluate the integrity of sensory fibers. To measure thresholds of thermal and vibratory sensations, we will perform quantitative sensory testing by the method of level using a Thermal Sensory Analyser and Vibratory Sensory Analyser (Medoc Advanced Medical System, Minneapolis, MN, USA) following an established protocol. We will use a contact heat stimulator to deliver thermal stimulation. Noxious and innocuous heat temperatures will be applied within the right foot dorsum. Several pretests will be applied before CHEP recording to eliminate expectation effects. To avoid sensitization and desensitization, low intensity stimuli will precede high intensity stimuli at each block.

Functional magnetic resonance imaging (fMRI) will be performed on a 3-T MR machine (Sonata; Siemens, Erlangen, Germany). A high resolution T1 weighted scan of the entire brain in trans-axial orientation will be obtained to provide anatomical information for the superimposed functional activation maps. Echo Planar Imaging will be used for the acquisition of the functional data. Each imaging session will be consisted of one high-resolution anatomical scan and three functional scanning runs, with 5-min intersession interval. During the scanning, several thermal stimuli will be applied by CHEP stimulator to the right dorsal foot. To avoid sensitization, the stimulation site will be changed slightly after each stimulus. After 12-s stimulation, the temperature will be cooling, with a subsequent 36-s interstimulus interval. After each fMRI session, subjects will be asked to rate the intensity and unpleasantness of received pain stimulus. The average rating values will be indicated after the scan on a computer driven visual analogue scale ranging from 0 to 10 (0, no pain; 1, slight intense; 2, mild intense; 3, moderate intense; 4, slight pain; 5, mild pain; 6, moderate pain; 7, moderate-strong pain; 8, strong pain; 9, severe pain; 10, unbearable pain), and the intensity and unpleasantness of received pain will be assessed using the Short-Form McGill Pain Questionnaire.

All data will be processed using the Statistical Parametric Mapping software (SPM2). fMRI data series will be realigned and resliced with sinc interpolation to correct for motion artifacts. Scans with sudden head movements of more than 2 mm will be omitted. To enable intersubject analysis, the functional data will be coregistered to the anatomical scan and transformed into a reference space according to the MNI template of SPM2 by normalization using sinc interpolation. The resampled voxel volume of the normalized images is 2 x 2 x 2 mm. Subsequently, data will be smoothed with an isotropic Gaussian kernel of 8 mm full-width at half maximum to reduce high frequency noise and to account for anatomical variances. Condition-specific effects will be estimated with the general linear model using a boxcar approach convolved with the hemodynamic response function. High pass filtering will remove low frequency noise and low pass filtering will account for serial autocorrelations of the data.

We will analyze the data on an individual (subject per subject) basis and across subjects (group analysis) using a cross-subjects variance (random effect analysis). Data from each stimulation will be pooled for group statistical comparisons. A single design matrix, including 3 sessions of all subjects, will be generated due to the limited number of experiments representing a fixed-effects model analysis. Statistical parametric maps will be generated as t-contrasts and corrected for multiple comparisons according to the random field theory with P \< 0.05. The threshold for the Z maps is 3.09 (P \< 0.001) for individual subject analysis. Significant clusters have to show a minimum extension volume of 10 voxels.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Neuropathic Pain

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

DEFINED_POPULATION

Study Time Perspective

OTHER

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

contact heat evoked potential stimulator

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients with peripheral neuropathy (defined according to the neuropathic symptoms and signs) and healthy volunteers will be recruited in this study

Exclusion Criteria

* subjects with structural brain lesions, pacemaker implantation, agoraphobia, and neurotic disorders.
Minimum Eligible Age

20 Years

Maximum Eligible Age

75 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Taiwan University Hospital

OTHER

Sponsor Role lead

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Sung-Tsang Hsieh, MD, PhD

Role: STUDY_DIRECTOR

Departments of Neurology,National Taiwan University Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

National Taiwan University Hospital

Taipei, , Taiwan

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Sung-Tsang Hsieh, MD, PhD

Role: CONTACT

886-2-23123456 ext. 8182

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Sung-Tsang Hsieh, MD, PhD

Role: primary

886-2-23123456 ext. 8182

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

9561701022

Identifier Type: -

Identifier Source: org_study_id