Multi-Tracer PET Quantitation of Insulin Action in Muscle (Phase 1, Phase 2, Phase 3, Phase 4)
NCT ID: NCT00222885
Last Updated: 2007-12-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
50 participants
OBSERVATIONAL
2002-12-31
2006-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
PET imaging is a relatively non-invasive way to obtain a "metabolic picture" of body organs, and has been used successfully to study brain, heart and more recently skeletal muscle. In this research study, we will use PET with as many as four radioactive tracers (markers) to study skeletal muscle glucose transport in healthy volunteers.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Specific Aim 1. The first specific aim is to develop the triple-tracer PET method for quantitative determinations of tissue perfusion, glucose transport and glucose phosphorylation in skeletal muscle. To measure blood flow and tissue perfusion, we will use 15O-H2O (half-life \~ 2 min; also referred to as 15O-water). To measure glucose transport, we will use 11C-3-O-methyl glucose (half-life \~ 20 min; also referred to as 3-0-MG), an analog that is transported but not phosphorylated or otherwise metabolized. 18F-2-deoxy-2-fluoro-glucose (half-life \~ 109 min; also referred to as FDG), will be used to examine glucose transport and glucose phosphorylation. Because of the differences in half-life of the three positrons (15O, 11C, and 18F), it is feasible to use each of these tracers, in sequence, in the same individual.
Specific Aim 2. The second specific aim is to rigorously test mathematical models to extract quantitative physiological information from dynamic PET imaging. We will test a novel model that specifically addresses the kinetics of substrate delivery within the interstitial space of skeletal muscle (i.e. a 5 rate constant, 4 compartment model with respect to FDG. Model testing will entail use of non-compartmental models e.g. spectral analysis).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
20 Years
45 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
NIH
University of Pittsburgh
OTHER
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
David E Kelley, MD
Role: PRINCIPAL_INVESTIGATOR
University of Pittsburgh
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Pittsburgh
Pittsburgh, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE. Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-D-glucose. J Clin Endocrinol Metab. 2005 Mar;90(3):1752-9. doi: 10.1210/jc.2004-1092. Epub 2004 Dec 21.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
011178
Identifier Type: -
Identifier Source: org_study_id