Change of Heart Rate Variability and Baroreflex Sensitivity After Ventral Cardiac Denervation
NCT ID: NCT00190112
Last Updated: 2010-10-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
30 participants
INTERVENTIONAL
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Off-pump coronary artery bypass (OPCAB) is performed based on patient's coronary angiography. Following the completion of coronary anastomoses, ventral cardiac denervation is achieved by removing the nerves around the large vessels of the base of the heart that run from the right side of the superior vena cava and end at the level of the midportion of the anterior pulmonary artery. This was done by excising the fat pads that surround the superior vena cava, the aorta, and the anterior and right lateral aspects of the main pulmonary artery.
Hemodynamic study:
All patients underwent OPCAB have Swan-Ganz catheter in our institute. Cardiac output measurement is obtained by thermodilution method. Hemodynamic variables (systemic blood pressure, pulmonary artery pressure, central venous pressure, pulmonary capillary wedge pressure, systemic vascular resistance, and pulmonary vascular resistance, etc) are recorded during the measurement.
ECG and blood pressure monitoring system:
ECG and radial arterial blood pressure were recorded by an analog to digital converter system (National Instrument Inc.). The analog signals were digitized in a rate of 500Hz and were stored in a hard disk. The data were then analyzed by a program written with MATLAB language (version 5.2, MATHWORK Co.). QRS complexes were automatically classified and manually verified as normal sinus rhythm, arterial or ventricular premature beats, or noise by comparison of the adjacent QRS morphologic features. The N-N interval time series were then transferred to a personal computer and post-processed.
Data acquisitions:
Immediately after induction of anesthesia, the patient was intubated. Routine indwelling catheters, like CVP and SG catheter were inserted. Prior to skin incision, the depth of anesthesia was monitored by BIS system using bispectral index (60\~70) and adjusted by inhalation agents. Digital ECG and BP signals were recorded for 15 min without any mechanical or pharmacological interference. After completion of surgical procedures, the data acquisition was repeated once again in the operation room under the same level of anesthesia.
Baroreflex sensitivity analysis:
The analysis of BRS was conducted by both the sequence method and the spectral (α-index) method. Sequence method: In brief, the beat-by-beat time series of systolic arterial blood pressure and ECG R-R intervals were scanned to identify sequences of over three consecutive beats in which the systolic blood pressure (SBP) and R-R intervals of the next beat changed concomitantly in increasing or decreasing sequence. Such beat-to-beat sequences were identified as baroreflex sequences. A linear regression was applied to the individual sequence and only r2 values \>0.85 were accepted. The measure of each type of the integrated spontaneous BRS was obtained by averaging all accepted slopes of the same type during a 5-minute recording. Spectral (α-index) method: The α-index (α) was obtained by means of the simultaneous spectral analysis of the R-R intervals and the SBP variabilities, with the calculation being made from the square root of the ratio between the R-R intervals and the SBP variability in low frequency (LF) band (αLF, 0.04 to 0.15 Hz). The coherence between the R-R intervals and SBP was assessed by a cross-spectral analysis. The α-index was calculated only when the magnitude of squared coherence (K2) between the RR and the SBP signals exceed 0.5 in LF band.
Heart rate variability analysis:
The missing intervals of the raw N-N data were linearly interpolated and resampled at 4 Hz by the Ron-Berger method. Each 5-minute segment of N-N intervals was taken for HRV analysis. The time domain measurements of HRV included SDNN, r-MSSD. The frequency-domain measurements of HRV included LF and HF, which were calculated by Welch's averaged periodogram of the N-N intervals.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
ventral cardiac denervation
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Far Eastern Memorial Hospital
OTHER
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Kuan-Ming Chiu, M.D.
Role: STUDY_CHAIR
Far Eastern Memorial Hospital
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
FEMH-E-940002
Identifier Type: -
Identifier Source: org_study_id