The Role of TSH Receptor, PPAR-r, IGF-1R, IGF and Cytokines in Different Stages of Graves'Ophthalmopathy
NCT ID: NCT00174057
Last Updated: 2005-09-15
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
50 participants
OBSERVATIONAL
2005-08-31
2006-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In recent years, TSHR, has been verified to express in orbital connective tissue and extra-ocular muscle. From functional studies and an increase in adipogenesis in cultured fibroblasts with expression of TSHR protein, the role not only the target but effector cells in orbital fibroblasts were validated. Quantitative RT-PCR may help to differentiate whether a less extent of expression at the end stage or low protein amount to be detected.
In recent years, the diverse phenotypes of orbital fibroblasts, with regard to expression of Thy-1 protein or not, had been reported from several studies, the investigators believed heterogeneity in orbital fibroblast may determine the clinical presentation of Graves'ophthalmopathy. We also are curious to know if the phenotypic heterogeneity of the fibroblasts in the ocular adnexal and orbital tissues correlates to distinct morphological features of adipogenesis and fibrosis.
Moreover, increased CD40 expression in skin fibroblasts were noted from patients with systemic sclerosis. Expression of IGF-I and IGF-IR seemed to be up-regulated in processes of several fibrotic diseases. A nuclear transcription factor, PPAR-γ, has been verified to have a close relationship with adipogenesis. We hypothesize that some immunological processes involve the ocular adnexal and orbital tissues, which result in various ophthalmological manifestations.
The purpose of this study is to investigate the different stage of the ocular adnexal and orbital tissues to identify the pathogenesis of Graves' ophthalmopathy by frozen sections with Immunohistochemistry, mRNA expression of TSH receptor, PPAR-γ, IGF-1R, and IGF-1 and different cytokines using quantitative RT-PCR and flow cytometry at the acute and stable stage in GO.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In recent years, TSHR, a putative autoantigen, has been verified to express in orbital connective tissue and extra-ocular muscle. In addition, they were further demonstrated to express on the surface of cultured orbital fibroblasts and orbital adipose tissue, in patients with GO in several laboratories. From functional studies and an increase in adipogenesis in cultured fibroblasts with expression of TSHR protein, the role not only the target but effector cells in orbital fibroblasts were validated7. We used immunohistochemistry to verify the existence of TSHR on the fibroblasts within the Müller muscle, and the positive staining is manifested in only18 % of patients. It may due to a less extent of expression at the end stage. We are very curious to know if there any difference on the expression of TSHR between orbital specimens from patients with acute and those with stable stage. Quantitative RT-PCR may help to differentiate whether a less extent of expression at the end stage or low protein amount to be detected.
In recent years, the diverse phenotypes of orbital fibroblasts, with regard to expression of Thy-1 protein or not, had been reported from several studies, the investigators believed heterogeneity in orbital fibroblast may determine the clinical presentation of Graves' ophthalmopathy. We also are curious to know if the phenotypic heterogeneity of the fibroblasts in the ocular adnexal and orbital tissues correlates to distinct morphological features of adipogenesis and fibrosis. In addition, systemic or local pro-inflammatory cytokines may contribute to turn on and turn off the expression of different roles of the fibroblasts.
Moreover, increased CD40 expression in skin fibroblasts were noted from patients with systemic sclerosis. Expression of IGF-I and IGF-IR seemed to be up-regulated in processes of several fibrotic diseases. A nuclear transcription factor, PPAR-γ, has been verified to have a close relationship with adipogenesis. In our previous study, the smooth muscle cells, in the diseased Mullers' muscle, were replaced by variable adipose and fibrosis tissues. The increased adipose and fibrosis tissue ex vivo of the Müller' muscle may result from over-action of some biochemical markers in the fibroblasts infiltrating around muscle cells. We hypothesize that some immunological processes involve the ocular adnexal and orbital tissues, which result in various ophthalmological manifestations.
The purpose of this study is to investigate the different stage ( acute or stable stage) of the ocular adnexal and orbital tissues ( including orbital fat, extraocular muscles, orbicularis muscles and eyelid fat) to identify and validate the pathogenesis of Graves ophthalmopathy by frozen sections of the ocular adnexal and orbital tissues with Immunohistochemistry (IHA) (Thy-1 and PPARγ), mRNA expression of TSH receptor, PPAR-γ, IGF-1R, and IGF-1 and different cytokines (IL-1β, IL-4, IL-6, IL-8) using quantitative RT-PCR and flow cytometry at the acute and stable stage in GO.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
OTHER
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Exclusion Criteria
20 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Taiwan University Hospital
OTHER
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Shu Lang Liao, MD
Role: STUDY_DIRECTOR
National Taiwan University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Shu Lang Liao
Taipei, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Shu Lang Liao, MD
Role: primary
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
9461700644
Identifier Type: -
Identifier Source: org_study_id