Kidney Stone Structural Analysis By Helical Computed Tomography (CT)

NCT ID: NCT00169780

Last Updated: 2011-12-07

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

7 participants

Study Classification

OBSERVATIONAL

Study Start Date

2002-07-31

Study Completion Date

2011-08-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Current practices of the diagnosis of urinary stones gives little information on the probable fragility of stones using shock wave lithotripsy (SWL), and many patients receive more SW's than is necessary to break up their stones. Indeed, some patients are treated with SWL when their stones cannot be fragmented using this technology. The investigators have ample evidence that computed tomography (CT) images of kidney stones can reveal significant internal structure in stones-structure that is likely to be useful in predicting stone fragility-but no one has explored the use of clinical helical CT for this purpose. Also, the investigators do not know the effect that the human body wall and kidney tissue will have on the resolution of kidney stone structure with helical CT.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Helical computed tomography has become the radiologic tool of choice in the assessment and treatment of patients with urinary tract calculi (Hubert et al, 1997; Smith et al, 1999). However, the full potential of helical CT to differentiate among stone types by structure or radiodensity has yet to be realized. Most CT scans for stones are used simply to identify the existence of a stone and give some indication of its size and location. These scans are viewed using soft tissue windows, in order to look for other possible causes of the patient's pain, such as appendicitis, gallstones, and colonic diverticulitis. However, soft tissue windows do not show structure within the kidney stone: stones appear as bright white objects in these images. The potential for observing structure in stones (using viewing windows closer to those used to view bone) has not been assessed in clinical studies. Currently, only the average CT attenuation value of urinary tract calculi has been investigated as an indicator of stone composition (Nakada et al, 2000; Mostafavi et al, 1998; Kuwahara et al, 1984). The average CT attenuation value has been shown to be useful for distinguishing some stones (such as uric acid from calcium oxalate) but considerable overlap in CT attenuation between stone types exist.

Treatment of urinary tract calculi is influenced by many factors including stone location, size and composition. Shock wave lithotripsy (SWL) is an effective, non-invasive method that is utilized to treat the majority of renal calculi. However, while some kidney stones are easily fragmented by SWL, other stones of similar composition are SW-resistant and must be removed by an invasive method following the failed lithotripsy. In addition, SWL is not without complications with long-term risks of hypertension and renal insufficiency (Evan et al, 1998; Willis et al, 1998). Considerable variation in SWL fragility exists within each major stone composition group that is best explained by stone structural heterogeneity (Saw et al, 2000). The association of stone structure and SWL fragility is not a new concept as Dretler and Polykoff (1996), in a retrospective study of calcium oxalate stones, reported four distinct patterns of stone structure on plain abdominal radiographs. Unfortunately, SWL fragility was not directly tested with the authors relying on clinical intuition that stones that on x-ray are smooth and more radiodense (and usually higher calcium oxalate monohydrate content) tend to be harder to fragment with SWL. Finally, the technology for clinical CT continues to advance. The latest generation of multidetector helical CT machines have considerably improved image resolution over single-detector CT technology. These quad-slice scanners have 4 contiguous, parallel rows of x-ray detectors combined with a higher gantry rotation speed which increase the speed of data collection by a factor as high as 8 over the conventional single-slice spiral CT scanners. The evolution from single-slice to multi-slice scanners does not alter image performance in terms of contrast resolution, in-plane spatial resolution and radiation dose if irradiating the same volume. However the benefits of quad-slice spiral CT compared to single-slice spiral CT are significant. The scans may be performed with thinner CT slices, which means higher spatial resolution along the longitudinal axis of the patient. The scans can also be performed much faster, which means improved temporal resolution and less motion artifacts. Thus, the ability to both predict stone composition from kidney stone CT attenuation values and delineate structural features necessary to predict stone fragility to lithotripter shock waves-if not now practical with present technology-will certainly be possible as this technology progresses.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Nephrolithiasis

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Renal Calculi Radiology High Reslolution CT

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

cohort

patients who require a CT scan prior to kidney stone surgery for diagnostic purposes

High definition helical CT (64 head scanner)

Intervention Type RADIATION

Patients who require a CT scan for diagnostic purposes prior to kidney stone surgery will undergo a high definition helical CT rather than the standard CT scan. This high resolution scan will then be reviewed by the researchers to help determine the type of treatment needed for the kidney stone removal. The aim is to see if the higher resolution will show more of the stone "anatomy" which will help the surgeon determine if the stone will be amenable to shock wave lithotripsy or if another type of treatment would best serve the patient needs.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

High definition helical CT (64 head scanner)

Patients who require a CT scan for diagnostic purposes prior to kidney stone surgery will undergo a high definition helical CT rather than the standard CT scan. This high resolution scan will then be reviewed by the researchers to help determine the type of treatment needed for the kidney stone removal. The aim is to see if the higher resolution will show more of the stone "anatomy" which will help the surgeon determine if the stone will be amenable to shock wave lithotripsy or if another type of treatment would best serve the patient needs.

Intervention Type RADIATION

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Male and female kidney stone patients of IU Health Physicians Urology in Indianapolis, IN requiring a computed tomography scan prior to their stone surgical treatment (extracorporeal shock wave lithotripsy \[ESWL\], percutaneous nephrolithotomy, ureteroscopy)
* Eligible patients must be able to suspend respiration for at least 20 seconds. The patient will be asked to perform a respiration suspension test for 20 seconds before recruitment.

Exclusion Criteria

* Women in whom the potential for pregnancy has not been excluded are not eligible. A pregnancy test will be performed if necessary.
* Inability to give informed consent
* A previous history of abdominal malignancy
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Indiana University School of Medicine

OTHER

Sponsor Role collaborator

National Kidney Foundation, United States

OTHER

Sponsor Role collaborator

Indiana Kidney Stone Institute

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

James Lingeman, MD

Role: PRINCIPAL_INVESTIGATOR

IU Health Physicians Urology

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

IU Health Methodist Hospital

Indianapolis, Indiana, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

02-035

Identifier Type: -

Identifier Source: org_study_id