Application of Genetic Polymorphisms of DNA Repair in The Prediction of Prostate Cancer Susceptibility and Its Clinical Outcome

NCT ID: NCT00167024

Last Updated: 2005-11-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

100 participants

Study Classification

OBSERVATIONAL

Study Start Date

2005-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Primary: to investigate the effects of DNA repair gene polymorphisms on prostate cancer susceptibility, pathological grade, disease stage and clinical outcome Secondary: to understand the association between DNA repair gene polymorphism and prostate cancer and provided important information for screening, prevention and treatment of prostate cancer

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

DNA repair plays a key role in carcinogenesis through the removal and repair of DNA damage induced by endogenous and environmental sources. The DNA repair system included four pathways: 1) Base Excision Repair (BER), 2) Nucleotide Excision Repair (NER), 3) Mismatch Repair (MMR) and 4) Double-Strand Break Repair, including homologous recombination pathway and nonhomologous end-joining repair pathway. Decreased and impaired DNA repair capacity has been reported in various cancers, however, its effect on prostate cancer still under investigated.

Common polymorphisms in DNA repair gene may alter protein function and individual's capacity to repair damaged DNA, hence, influence the cancer susceptibility. Polymorphic variants of DNA repair gene have been found to be associated with cancer susceptibility, but rare studies have investigated their effect on prostate cancer. Since variation in the function of these DNA repair genes also impact a cancer cell's viability or resistance to treatment, genetic variants in DNA repair might serve as a valuable biomarker in forcasting the result of cancer treatment. In fact, some reports have demonstrated the association between polymorphisms of DNA repair genes and results of treatment of various cancers.

For the present study proposal, we focused on several DNA repair genes: X-ray repair cross- complementing group 1 (XRCC1), human oxoguanine glycosylase I (hOGG1), xeroderma pigmentosum complementation group D (XPD), hMSH2, hMLH1 and X-ray repair cross-complementing group 3 (XRCC3), which might have relevance in prostate carcinogenesis based on their known functions. XRCC1 is involved in DNA repair in the base excision pathway, the hOGG1 gene encodes a DNA glycosylase /apurinic-apyrimidinic lyase that catalyzes the excision and removal the 8-OH-dG (8-hydroxy- 2-deoxyguanine) - which is a major form of oxidative DNA damage. The XPD gene codes for a DNA helicase involved in transcription and nucleotide excision repair. The hMSH2 and hMLH1 are genes involved with mismatch repair. The XRCC3 gene encoded a protein in the double-strand break homologous recombinational repair pathways.

In this proposed study, we will also use PCR-based methods to investigate the effects of DNA repair gene polymorphisms on prostate cancer susceptibility, pathological grade, disease stage and clinical outcome. With these efforts, we will further understand the association between DNA repair gene polymorphism and prostate cancer and provided important information for screening, prevention and treatment of prostate cancer.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Prostate Cancer

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

prostate cancer, DNA repair gene, genetic polymorphism

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

DEFINED_POPULATION

Study Time Perspective

OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* prostate cancer approved by pathology

Exclusion Criteria

* combined with other malignancy
* accepting blood transfusion within 6 months
Minimum Eligible Age

0 Years

Eligible Sex

MALE

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Taiwan University Hospital

OTHER

Sponsor Role lead

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Chao-Yuan Huang, MD

Role: PRINCIPAL_INVESTIGATOR

National Taiwan University Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

National Taiwan University Hospital

Taipei, , Taiwan

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Chao-Yuan Huang, MD

Role: CONTACT

Phone: 886-2-23123456

Email: [email protected]

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Chao-Yuan Huang, MD

Role: primary

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

9461700307

Identifier Type: -

Identifier Source: org_study_id