Tailored Treatment of H. Pylori Infection Based Polymorphisms of CYP2C19 and 23S rRNA of H. Pylori
NCT ID: NCT00149084
Last Updated: 2006-09-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE3
296 participants
INTERVENTIONAL
2003-04-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
PPIs, such as lansoprazole and omeprazole, are mainly metabolized in the liver by a genetically determined enzyme, S-mephenytoin 4'-hydroxylase (CYP2C19). Plasma concentrations of PPIs and their activity for acid inhibition depend to a significant extent on the genetic differences in the activity of this enzyme. The acid inhibition attained by the standard dose of a PPI is sometimes therapeutically insufficient in individuals with the rapid extensive metabolizer (RM) genotype of CYP2C19, whereas that in individuals with poor metabolizer (PM) genotype of CYP2C19 is in most cases clinically sufficient. We have reported that the CYP2C19 genotype status is one of the determinants of H. pylori eradication therapy. In the triple therapy with a PPI, amoxicillin, and clarithromycin, bacterial susceptibility to clarithromycin as well as the CYP2C19 genotype status was significantly related to eradication rates of H. pylori. Therefore, the tailored treatment based on these two factors is expected to increase the eradication rates of the initial therapy.
Interestingly, both of CYP2C19 genotypes and bacterial susceptibility to clarithromycin can be measured by the genetic test of the single nucleotide polymorphisms (SNPs) of the CYP2C19 gene and the 23S rRNA gene of H. pylori, respectively. We have recently developed the inexpensive and reliable high-throughput method for measurement of such SNPs by the invader assay. Polymorphisms of CYP2C19 of patients and mutations of 23S rRNA of H. pylori associated with susceptibility to clarithromycin can be detected from the gastric tissue samples infected with H. pylori, such as the gastric tissue sample already used for rapid urease test (RUT).
Then, we treat H. pylori-positive patients by the tailored regimen based on genotypes of CYP2C19 of patients and 23S rRNA of H. pylori or the standard regimen and test the therapeutic efficacy of this pharmacogenomics-based tailored strategy in a prospective manner.
Patients were randomly assigned to the standard or tailored regimen group with the use of a computer-generated randomization list based on a blocked randomization method.
Patients assigned to the standard regimen group were treated with 30 mg of lansoprazole bid, 400 mg of clarithromycin bid, and 750 mg of amoxicillin bid for one week, which had been approved under the Japanese formulary regulation regardless of any pharmacogenomic backgrounds of H. pylori-infected peptic ulcer patients.
In the tailored regimen group, patients infected with a clarithromycin-sensitive strain of H. pylori are treated with triple therapy consisting of clarithromycin 200 mg tid, amoxicillin 500 mg tid and the individualized doses of lansoprazole dose (i.e., 30 mg tid in RMs, 15 mg tid in IMs, and 15 mg bid in PMs) for one week, while patients infected with a clarithromycin-resistant strain of H. pylori are treated with dual therapy consisting of amoxicillin 500 mg qid and the individualzed dose of lansoprazole (i.e., 30 mg qid in RMs, 15 mg qid in IMs, and 15 mg bid in PMs) for two weeks.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
FACTORIAL
TREATMENT
NONE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Lansoprazole, clarithromycin, amoxicillin
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
15 Years
90 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Yokoyama Foundation for Clinical Pharmacology
OTHER
Hamamatsu University
OTHER
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Takahisa Furuta, MD, PhD
Role: STUDY_CHAIR
Center for Clinical Research, Hamamatsu University School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hamamatsu University School of Medicine
Hamamatsu, Shizuoka, Japan
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Takahisa Furuta, MD, PhD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Furuta T, Shirai N, Sugimoto M, Nakamura A, Hishida A, Ishizaki T. Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies. Drug Metab Pharmacokinet. 2005 Jun;20(3):153-67. doi: 10.2133/dmpk.20.153.
Furuta T, Sagehashi Y, Shirai N, Sugimoto M, Nakamura A, Kodaira M, Kenmotsu K, Nagano M, Egashira T, Ueda K, Yoneyama M, Ohashi K, Ishizaki T, Hishida A. Influence of CYP2C19 polymorphism and Helicobacter pylori genotype determined from gastric tissue samples on response to triple therapy for H pylori infection. Clin Gastroenterol Hepatol. 2005 Jun;3(6):564-73. doi: 10.1016/s1542-3565(04)00779-7.
Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T. Pharmacogenomics of proton pump inhibitors. Pharmacogenomics. 2004 Mar;5(2):181-202. doi: 10.1517/phgs.5.2.181.27483.
Sugimoto M, Furuta T, Shirai N, Kajimura M, Hishida A, Sakurai M, Ohashi K, Ishizaki T. Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. Clin Pharmacol Ther. 2004 Oct;76(4):290-301. doi: 10.1016/j.clpt.2004.06.008.
Furuta T, Shirai N, Xiao F, Takashita M, Sugimoto M, Kajimura M, Ohashi K, Ishizaki T. High-dose rabeprazole/amoxicillin therapy as the second-line regimen after failure to eradicate H. pylori by triple therapy with the usual doses of a proton pump inhibitor, clarithromycin and amoxicillin. Hepatogastroenterology. 2003 Nov-Dec;50(54):2274-8.
Furuta T, Shirai N, Ohashi K, Ishizaki T. Therapeutic impact of CYP2C19 pharmacogenetics on proton pump inhibitor-based eradication therapy for Helicobacter pylori. Methods Find Exp Clin Pharmacol. 2003 Mar;25(2):131-43. doi: 10.1358/mf.2003.25.2.723687.
Furuta T, Shirai N, Xiao F, Ohashi K, Ishizaki T. Effect of high-dose lansoprazole on intragastic pH in subjects who are homozygous extensive metabolizers of cytochrome P4502C19. Clin Pharmacol Ther. 2001 Nov;70(5):484-92. doi: 10.1067/mcp.2001.119721.
Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Nakagawa K, Sugimura H, Ohashi K, Ishizaki T. Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics. 2001 Jun;11(4):341-8. doi: 10.1097/00008571-200106000-00009.
Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Sugimura H, Ohashi K, Ishizaki T, Kaneko E. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther. 2001 Mar;69(3):158-68. doi: 10.1067/mcp.2001.113959.
Furuta T, Takashima M, Shirai N, Xiao F, Hanai H, Ohashi K, Ishizaki T. Cure of refractory duodenal ulcer and infection caused by Helicobacter pylori by high doses of omeprazole and amoxicillin in a homozygous CYP2C19 extensive metabolizer patient. Clin Pharmacol Ther. 2000 Jun;67(6):684-9. doi: 10.1067/mcp.2000.106826.
Furuta T, Ohashi K, Kosuge K, Zhao XJ, Takashima M, Kimura M, Nishimoto M, Hanai H, Kaneko E, Ishizaki T. CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther. 1999 May;65(5):552-61. doi: 10.1016/S0009-9236(99)70075-5.
Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T, Hanai H, Kubota T, Ishizaki T, Kaneko E. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med. 1998 Dec 15;129(12):1027-30. doi: 10.7326/0003-4819-129-12-199812150-00006.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Hp.CYP.001
Identifier Type: -
Identifier Source: org_study_id