Ozone Exposure and Dose Delivered to Human Lungs

NCT ID: NCT00013780

Last Updated: 2006-03-23

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

50 participants

Study Classification

OBSERVATIONAL

Study Start Date

1998-07-31

Study Completion Date

2003-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Ozone is an air pollutant formed in at ground level by the chemical reaction between oxygen and automobile emissions in the presence of sunlight. The objective of this research is to determine how lung size, chemical composition, and normal functioning of the respiratory system affect the amount of inhaled ozone that reaches internal sites of tissue irritation and damage. To infer the distribution of inhaled ozone within the respiratory system, measurements of ozone concentration and air flow are made just outside the nose and mouth of healthy subjects who breathe laboratory-generated, ozonated air for about one hour. Biochemical composition of respiratory mucus is then inferred from nasal washings made with salt water. The amount of ozone that a subject retains in one of these experiments is less than the daily exposure in a large city such as New York or Los Angeles.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Ozone is a ground-level air pollutant generated primarily by the photochemical reaction of automobile emissions. The primary objective of this research is to determine the mechanism by which anatomical, physiological, and biochemical factors influence the longitudinal distribution of respiratory ozone dose that is delivered to respiratory tissue during a particular exposure condition. The specific aims are: 1) test the hypothesis that an increase in respiratory flow increases the sensitivity of ozone dose to antioxidant levels in the epithelial lining fluid. Ozone absorption will be measured in the nose of healthy nonsmokers at different nasal flows while antioxidant levels are measured in nasal liquid; 2) test the hypothesis that the continuous inhalation of ozone and co-pollutant gases affects antioxidant levels in the epithelial lining fluid, thereby modulating the ozone dose. Ozone absorption and antioxidant levels in nasal lavage will be intermittently measured in the nose of healthy nonsmokers while these subjects are continuously exposed to clean air, ozone, nitrogen dioxide or sulfur dioxide during quiet nasal breathing for two hours; 3) test the hypothesis that antioxidant concentrations in epithelial lining fluid are directly related to plasma concentrations so that ozone absorption are modulated by the appropriate pharmacological or dietary interventions. The longitudinal distribution of ozone absorption will be measured throughout the conducting airways of healthy nonsmokers during quiet nasal breathing. Measurements will be repeated at baseline conditions, after using probenecid to pharmacologically reduce systemic urate, and after vitamin C supplementation to increase systemic ascorbate; 4) quantify the reaction kinetics between ozone and antioxidants in epithelial lining fluid. Samples of nasal liquid will be reacted with a controlled flow of ozone in a miniature bioreactor to determine the reaction rate constant and reaction order of ozone consumption; and 5) further develop a single-path diffusion model. Respiratory absorption as well as in vitro reaction kinetics data will be used to validate a mathematical ozone dosimetry model that can predict the longitudinal distribution of ozone dose to airway tissue.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Lung Disease

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

ozone uptake inhalation toxicology nasal cavities antioxidants

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

NATURAL_HISTORY

Study Time Perspective

OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

A subject will be enrolled in the study only if he or she: has not smoked within the past 3 years; and does not have hay fever, asthma, allergic rhinitis, nasal breathing disorders or anatomical abnormalities, chronic respiratory disease, or any other chronic diseases. Women will not be included in the study if they are pregnant.

Exclusion Criteria

Subjects who regularly take mediation will be excluded from the study.
Minimum Eligible Age

18 Years

Maximum Eligible Age

30 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Environmental Health Sciences (NIEHS)

NIH

Sponsor Role lead

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

James S Ultman, PhD

Role: PRINCIPAL_INVESTIGATOR

Penn State University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

General Clinical Research Center, Penn State University

University Park, Pennsylvania, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R01ES006075

Identifier Type: NIH

Identifier Source: secondary_id

View Link

6075-CP-001

Identifier Type: -

Identifier Source: org_study_id